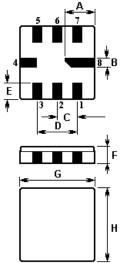


**SAW Filter** 


## **NDF4900**

Output

C

The **NDF4900** is a low-loss, compact, and economical surface-acoustic-wave (**SAW**) filter in a surface-mount ceramic **QCC8C** case designed to provide front-end selectivity in **390.000** MHz receivers. Receiver designs using this filter include superhet with 10.7 MHz or 500 kHz IF, direct conversion and superregen.

### 1. Package Dimension (QCC8C)



| Pin        | Connection     |  |  |
|------------|----------------|--|--|
| 1          | Input          |  |  |
| 5          | Output         |  |  |
| 2, 3, 6, 7 | to be Grounded |  |  |
| 4, 8       | Case Ground    |  |  |

| Sign | Data (unit: mm) | Sign | Data (unit: mm) |  |  |
|------|-----------------|------|-----------------|--|--|
| А    | 2.08            | Е    | 1.20            |  |  |
| В    | 0.60            | F    | 1.35            |  |  |
| С    | 1.27            | G    | 5.00            |  |  |
| D    | 2.54            | Н    | 5.00            |  |  |

6

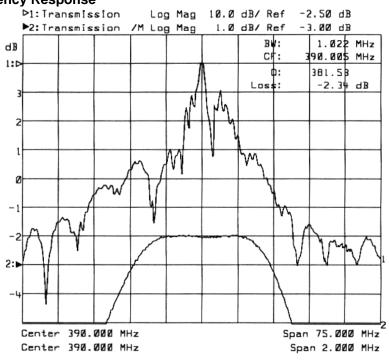
 $L=47 nH^*$ 

3. Test Circuit

L

C=12pF\*

Input


C

2. Marking

# **NDF4900**

Laser Marking







**SAW Filter** 

### 5. Performance

5-1. Maximum Ratings

| Rating                     |                 | Value      | Unit |
|----------------------------|-----------------|------------|------|
| Input Power Level          | $P_{in}$        | 10         | dBm  |
| DC Voltage                 | V <sub>DC</sub> | 12         | V    |
| Storage Temperature Range  | $T_{\rm stg}$   | -40 to +85 | °C   |
| Operable Temperature Range | TA              | -10 to +60 | °C   |

#### 5-2. Electronic Characteristics

| Characteristic                                            |                                     | Minimum         | Typical | Maximum        | Unit |        |
|-----------------------------------------------------------|-------------------------------------|-----------------|---------|----------------|------|--------|
| Center Frequency<br>(center frequency between 3dB points) |                                     | f <sub>C</sub>  |         | 390.000        |      | MHz    |
| Insertion Loss                                            |                                     | IL              |         | 3.0            | 4.5  | dB     |
| 3dB Pass band                                             | I                                   | BW <sub>3</sub> | ±350    | ±500           |      | kHz    |
| Rejection                                                 | at f <sub>C</sub> -21.4 MHz (Image) |                 | 35      | 45             |      | dB     |
|                                                           | at f <sub>C</sub> -10.7 MHz (LO)    |                 | 30      | 40             |      |        |
|                                                           | Ultimate                            |                 |         | 60             |      |        |
| Temperature                                               | Turnover Temperature                | To              | 25      |                | 55   | °C     |
|                                                           | Turnover Frequency                  | f <sub>O</sub>  |         | f <sub>C</sub> |      | MHz    |
|                                                           | Frequency Temperature Coefficient   | FTC             |         | 0.032          |      | ppm/℃² |
| Frequency Aging Absolute Value during the First Year      |                                     | fA              |         | 10             |      | ppm/yr |

## **(i)** CAUTION: Electrostatic Sensitive Device. Observe precautions for handling!

#### © NEDI 2003. All Rights Reserved.

- 1. The frequency  $f_C$  is defined as the midpoint between the 3dB frequencies.
- 2. Unless noted otherwise, all measurements are made with the filter installed in the specified test fixture that is connected to a 50Ω test system with VSWR≤1.2:1. The test fixture L and C are adjusted for minimum insertion loss at the filter center frequency, f<sub>c</sub>. Note that insertion loss, bandwidth, and passband shape are dependent on the impedance matching component values and quality.
- 3. Unless noted otherwise, specifications apply over the entire specified operating temperature range.
- 4. Frequency aging is the change in f<sub>c</sub> with time and is specified at +65°C or less. Aging may exceed the specification for prolonged temperatures above +65°C. Typically, aging is greatest the first year after manufacture, decreasing in subsequent years.
- 5. Turnover temperature,  $T_0$ , is the temperature of maximum (or turnover) frequency,  $f_0$ . The nominal frequency at any case temperature,  $T_c$ , may be calculated from:  $f = f_0 [1 FTC (T_0 T_c)^2]$ .
- 6. The specifications of this device are based on the test circuit shown above and subject to change or obsolescence without notice.
- 7. All equipment designs utilizing this product must be approved by the appropriate government agency prior to manufacture or sale.
- 8. Our liability is only assumed for the Surface Acoustic Wave (SAW) component(s) per se, not for applications, processes and circuits implemented within components or assemblies.
- 9. For questions on technology, prices and delivery, please contact our sales offices or e-mail <u>winnsky@winnsky.com</u>