

The **NDF4088** is a low-loss, compact, and economical surface-acoustic-wave (**SAW**) filter in a surface-mount ceramic **DCC6** case with **481.250** MHz center frequency.

1. Package Dimension (DCC6)

Pin	Configuration			
2	Input			
5	Output			
1, 3, 4, 6	Ground			

Unit: mm

2. Marking

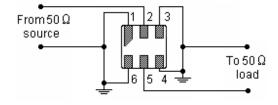
- The logo "ND" indicates our product's mark
- The character "F" indicates the type of SAW component Including: F (filter), R (resonator) etc.
- The "4088" indicates the model name of SAW component
- The character "*" indicates the month code in a year

	1	2	3	4	5	6	7	8	9	10	11	12
2005	Α	В	С	D	Е	F	G	Н	J	K	L	M
2006	N	Р	Q	R	S	Т	U	V	W	Х	Υ	Ζ
2007	а	b	С	d	е	f	g	h	j	k	I	m
2008	n	р	q	r	S	t	u	V	W	Х	у	Z

- The characters "001" indicate the lot number of mounting Including: 001~999

3. Maximum Ratings

Rating		Value	Unit
Operable Temperature Range	<i>T</i> A	-30 to +80	${\mathbb C}$
Storage Temperature Range	T_{stg}	-40 to +85	$^{\circ}$
DC Voltage (between each Terminal)	$V_{ m DC}$	0	V
RF Power (in BW)	Р	30 max.	dBm
ESD Voltage (HB)	V	150	V


4. Electrical Characteristics

Characteristic		Minimum	Typical	Maximum	Unit
Center Frequency	$f_{\mathbb{C}}$		481.250		MHz
User Signal Band	BW	478.75		483.75	MHz
Insertion Loss 478.75 483.75 MHz	IL		1.8	2.4	dB
Absolute Attenuation 0.50 350.00 MHz 350.00 450.00 MHz 489.00 493.50 MHz 493.50 507.50 MHz 507.50 1500.0 MHz	α	27 24 40 32 20	32 28 45 37 23	 	dB dB dB dB
Passband Ripple 478.75 483.75 MHz	Δα		0.7	1.5	dB
VSWR 478.75 483.75 MHz	SWR		1.5	2.0	
Input / Output Impedance			50		Ω


(i) CAUTION: Electrostatic Sensitive Device. Observe precautions for handling!

- 1. The frequency f_C is defined as the midpoint between the 3dB frequencies.
- Unless noted otherwise, all measurements are made with the filter installed in the specified test fixture that is connected
 to a 50Ω test system with VSWR≤1.2:1. The test fixture L and C are adjusted for minimum insertion loss at the filter center
 frequency, f_C. Note that insertion loss, bandwidth, and passband shape are dependent on the impedance matching
 component values and quality.
- 3. Unless noted otherwise, specifications apply over the entire specified operating temperature range.
- 4. The specifications of this device are based on the test circuit shown below and subject to change or obsolescence without notice.
- 5. All equipment designs utilizing this product must be approved by the appropriate government agency prior to manufacture or sale.

5. Test Circuit

7. Environmental Characteristics

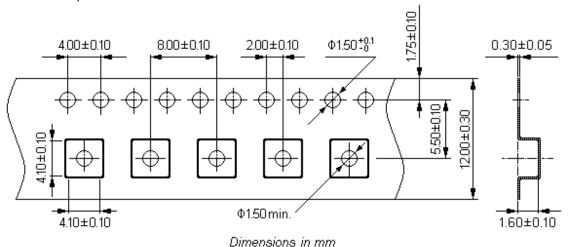
	Test item	Condition of test	Requirements
1	Mechanical shock	(a) Drops: 3 times on concrete floor (b) Height: 1.0m	
2	Vibration resistance	(a) Frequency of vibration: 10~55Hz (b) Amplitude: 1.5mm (c) Directions: X,Y and Z (d) Duration: 2 hours	
3	Moisture resistance	(a) Condition: 40°C, 90~95% R.H. (b) Duration: 96 hours (c) Wait 4 hours before measurement	The SAW filter
4	Climatic sequence	(b) +55℃ for 24 hours, 90~95% R.H. (c) -25℃ for 2 hours (d) +40℃ for 24 hours, 90~95% R.H. (e) Wait 4 hours before measurement	shall remain within the electrical specifications after tests.
5	High Temperature Exposure	(a) Temperature: 70°C (b) Duration: 250 hours (c) Wait 4 hours before measurement	G.1.0.
6	Thermal impact	(a) +70°C for 30 minutes \Rightarrow -25°C for 30 minutes repeated 3 times (b) Wait 4 hours before measurement	

8. Remarks

8-1 Static voltage

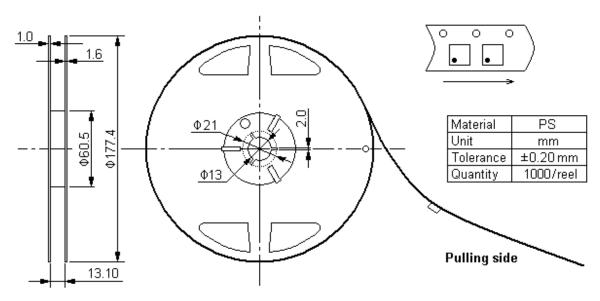
Static voltage between signal load & ground may cause deterioration & destruction of the SAW filter. Please avoid static voltage.

8-2 Ultrasonic cleaning

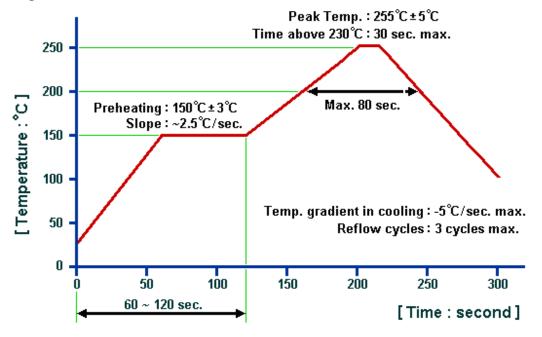

Ultrasonic vibration may cause deterioration & destruction of the SAW filter. Please avoid ultrasonic cleaning.

8-3 Soldering

Only terminals of the SAW filter may be soldered. Please avoid soldering other parts of the SAW filter.


9. Packing

9-1. Carrier Tape



9-2. Reel Dimensions

10. Soldering Profile

© NEDI 2006. All Rights Reserved.

Our liability is only assumed for the Surface Acoustic Wave (SAW) component(s) per se, not for applications, processes and circuits implemented within components or assemblies.

For questions on technology, prices and delivery, please contact our sales offices or e-mail winnsky@winnsky.com