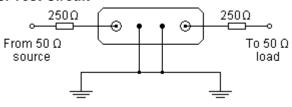


The **NDF110N** is a low-loss, compact, and economical surface-acoustic-wave (**SAW**) filter in a low-profile metal **F-11** case with center frequency 110.592 MHz.

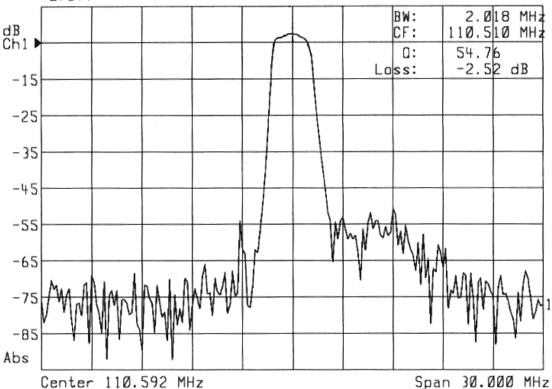
1. Package Dimension (F-11)

Pin	Configuration			
1	Input / Output			
4	Output / Input			
2/3	Case Ground			


Dimensions	Data (unit: mm)				
Α	11.0±0.3				
В	4.5±0.3				
С	3.2±0.3				
D	0.45±0.1				
E	5.0±0.5				
F	2.54±0.2				

2. Marking

NDF110N


Color: Black or Blue

3. Test Circuit

4. Typical Frequency Response

▶1:Transmission /M Log Mag 10.0 dB/ Ref -5.00 dB ▶2:Off

5. Performance

5-1. Maximum Ratings

Rating	Value		
RF Power Dissipation	Р	0 dBm	
DC Voltage	V_{DC}	10 V	
AC Voltage	V_{PP}	10V 50Hz/60Hz	
Storage Temperature Range	$T_{ m stg}$	-40 to +85 ℃	
Operating Temperature Range	T _A	-20 to +60 ℃	

5-2. Electronic Characteristics

Characteristic		Minimum	Typical	Maximum	Unit
Nominal Center Frequency	$f_{\mathbb{C}}$		110.592		MHz
User Signal Band	BW		f _C ±576		kHz
Insertion Loss	IL		3.5	4.5	dB
Relative Attenuation (relative to \it{IL}) 1) $f_{C} - 5.0 \rm{MHz}$ 2) $f_{C} - 3.5 \rm{MHz}$ 3) $f_{C} \pm 2.0 \rm{MHz}$ 4) $f_{C} + 3.5 \rm{MHz}$ 5) $f_{C} + 5.0 \rm{MHz}$	$lpha_{ m rel}$	50 45 30 40 40	62 60 40 52 52	 	dB
Input / Output Impedance (Nominal)		300Ω // 1.2μH			

(i) CAUTION: Electrostatic Sensitive Device. Observe precautions for handling!

© NEDI 2003. All Rights Reserved.

- 1. The frequency f_C is defined as the midpoint between the 3dB frequencies.
- 2. Unless noted otherwise, all measurements are made with the filter installed in the specified test fixture that is connected to a 50 Ω test system with VSWR≤1.2:1. The test fixture L and C are adjusted for minimum insertion loss at the filter center frequency, f_C. Note that insertion loss, bandwidth, and passband shape are dependent on the impedance matching component values and quality.
- Unless noted otherwise, specifications apply over the entire specified operating temperature range.
 The specifications of this device are based on the test circuit shown above and subject to change or
- The specifications of this device are based on the test circuit shown above and subject to change or obsolescence without notice.
- 5. All equipment designs utilizing this product must be approved by the appropriate government agency prior to manufacture or sale.
- 6. Our liability is only assumed for the Surface Acoustic Wave (SAW) component(s) per se, not for applications, processes and circuits implemented within components or assemblies.
- 7. For questions on technology, prices and delivery please contact our sales offices or e-mail winnsky@winnsky.com