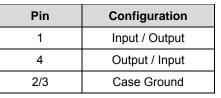
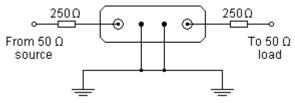

SAW Filter

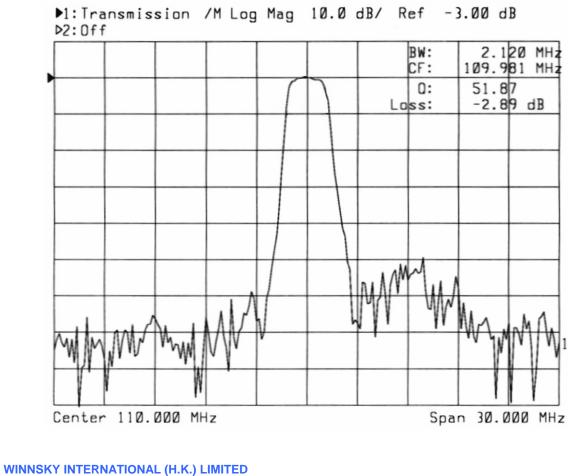
1


The **NDF110L** is a low-loss, compact, and economical surface-acoustic-wave (**SAW**) filter in a low-profile metal **F-11** case with center frequency 110.000 MHz.

1. Package Dimension (F-11)


2. Marking

NDF110L


Dimensions	Data (unit: mm)		
А	11.0±0.3		
В	4.5±0.3		
С	3.2±0.3		
D	0.45±0.1		
E	5.0±0.5		
F	2.54±0.2		

3. Test Circuit

Color: Black or Blue

4. Typical Frequency Response

5. Performance

5-1. Maximum Ratings

Rating	Value		
RF Power Dissipation	Р	0 dBm	
DC Voltage	V _{DC}	10 V	
AC Voltage	V_{PP}	10V 50Hz/60Hz	
Storage Temperature Range	$T_{\rm stg}$	-40 to +85 ℃	
Operating Temperature Range	T _A	-20 to +60 ℃	

5-2. Electronic Characteristics

Characteristic		Minimum	Typical	Maximum	Unit	
Nominal Center Frequency	f _C		110.000		MHz	
User Signal Band	BW		f _C ±576		kHz	
Insertion Loss	IL		3.5	4.5	dB	
Relative Attenuation (relative to IL)	$a_{\rm rel}$					
1) f _C — 5.0 MHz		50			dB	
2) f _c — 3.5 MHz		45				
3) f _c \pm 2.0 MHz		30				
4) f_{c} + 3.5 MHz		40				
5) f _c + 5.0 MHz		40				
Group Delay Deviation	$\Delta \tau$	0.7 µs				
Input / Output Impedance (Nominal)		300Ω // 1.2µH				

(i) CAUTION: Electrostatic Sensitive Device. Observe precautions for handling!

6. Reliability

6.1 Mechanical Shock

The components shall remain within the electrical specifications after 1000 shocks, acceleration $392m/s^2$, duration 6 milliseconds.

6.2 Vibration Fatigue

The components shall remain within the electrical specifications after loaded vibration at 20 Hz, amplitude 1.5mm, for 2 hours.

6.3 Terminal Strength

The components shall remain within the electrical specifications after pulled 2 Kgs weight for 10 seconds towards an axis of each terminal.

6.4 High Temperature Storage

The components shall remain within the electrical specifications after being kept at the $85^{\circ}C \pm 2^{\circ}C$ for 48 hours, and then kept at room temperature for 2 hours.

6.5 Low Temperature Storage

The components shall remain within the electrical specifications after being kept at the $-25^{\circ}C \pm 2^{\circ}C$ for 48 hours, and then kept room temperature for 2 hours.

6.6 Temperature Cycle

The components shall remain within the electrical specifications after 5 cycles of high and low temperature testing (one cycle: 80°C for 30 minutes \rightarrow 25°C for 5 minutes \rightarrow -25°C for 30 minutes) than kept at room temperature for 2 hours.

6.7 Solder-heat Resistance

The components shall remain within the electrical specifications after dipped in the solder at 260° C for 10 ± 1 seconds, and then kept at room temperature for 2 hours. (Terminal must be dipped leaving 1.5 mm from the case).

6.8 Solder ability

Solder ability of terminal shall be kept at more than 80% after dipped in the solder flux at $230^{\circ}C \pm 5^{\circ}C$ for 5 ± 1 seconds.

7. Remarks

7.1 Static voltage

Static voltage between signal load & ground may cause deterioration & destruction of the component. Please avoid static voltage.

7.2 Ultrasonic cleaning

Ultrasonic vibration may cause deterioration & destruction of the component. Please avoid ultrasonic cleaning.

7.3 Soldering

Only leads of component may be soldered. Please avoid soldering another part of component.

© NEDI 2003. All Rights Reserved.

- 1. The frequency f_c is defined as the midpoint between the 3dB frequencies.
- 2. Unless noted otherwise, all measurements are made with the filter installed in the specified test fixture that is connected to a 50 Ω test system with VSWR≤1.2:1. The test fixture L and C are adjusted for minimum insertion loss at the filter center frequency, f_C. Note that insertion loss, bandwidth, and passband shape are dependent on the impedance matching component values and quality.
- 3. Unless noted otherwise, specifications apply over the entire specified operating temperature range.
- 4. The specifications of this device are based on the test circuit shown above and subject to change or obsolescence without notice.
- 5. All equipment designs utilizing this product must be approved by the appropriate government agency prior to manufacture or sale.
- 6. Our liability is only assumed for the Surface Acoustic Wave (SAW) component(s) per se, not for applications, processes and circuits implemented within components or assemblies.
- 7. For questions on technology, prices and delivery please contact our sales offices or e-mail <u>winnsky@winnsky.com</u>