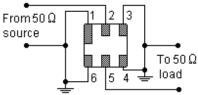


SAW Filter

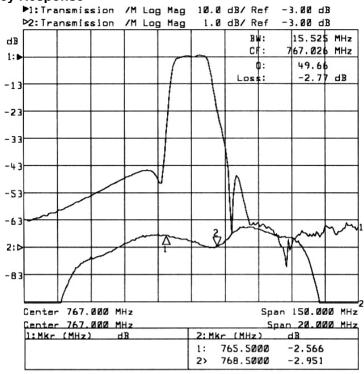
The **NDF5008** is a low-loss, compact, and economical surface-acoustic-wave (**SAW**) RF filter in a surface-mount ceramic **DCC6C** case with center frequency **767.000** MHz.

1. Package Dimensions (DCC6C)


Pin	Configuration			
2	Input / Output			
5	Output / Input			
1, 3, 4, 6	Case Ground			

Sign	Data (unit: mm)	Sign Data (unit: mm)	
А	0.6	Е	1.1
В	1.5	F	3.0
С	1.5	G	3.0
D	1.8		

2. Marking



3. Test Circuit

Laser Marking

4. Typical Frequency Response

WINNSKY INTERNATIONAL (H.K.) LIMITED

SAW Filter

5. Performance

5-1. Maximum Ratings

Rating	Value	Unit	
Input Power Level	Р	10	dBm
DC Voltage	V _{DC}	12	V
Operable Temperature Range	T _A	-10 to +60	°C
Storage Temperature Range	$T_{\rm stg}$	-40 to +85	°C

5-2. Electronic Characteristics

Characteristic		Minimum	Typical	Maximum	Unit
Center Frequency	f _C		767.000		MHz
3dB Bandwidth	BW		15.5		MHz
Insertion Loss 765.50 768.50 MHz	IL		3.0	4.0	dB
Absolute Attenuation 692.00 753.00 MHz 785.00 794.00 MHz 794.00 842.00 MHz	α	35 36 50	42 43 60		dB dB dB
Amplitude Ripple (p-p) 765.50 768.50 MHz	Δα			1.0	dB
Input / Output Impedance (Nominal)			50	•	Ω

(i)CAUTION: Electrostatic Sensitive Device. Observe precautions for handling!

© NEDI 2003. All Rights Reserved.

- 1. The frequency f_C is defined as the midpoint between the 3dB frequencies.
- Unless noted otherwise, all measurements are made with the filter installed in the specified test fixture that is connected to a 50Ω test system with VSWR≤1.2:1. The test fixture L and C are adjusted for minimum insertion loss at the filter center frequency, f_C. Note that insertion loss, bandwidth, and passband shape are dependent on the impedance matching component values and quality.
- 3. Unless noted otherwise, specifications apply over the entire specified operating temperature range.
- 4. The specifications of this device are based on the test circuit shown above and subject to change or obsolescence without notice.
- 5. All equipment designs utilizing this product must be approved by the appropriate government agency prior to manufacture or sale.
- 6. Our liability is only assumed for the Surface Acoustic Wave (SAW) component(s) per se, not for applications, processes and circuits implemented within components or assemblies.
- 7. For questions on technology, prices and delivery, please contact our sales offices or e-mail winnsky@winnsky.com