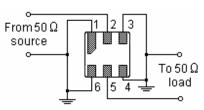


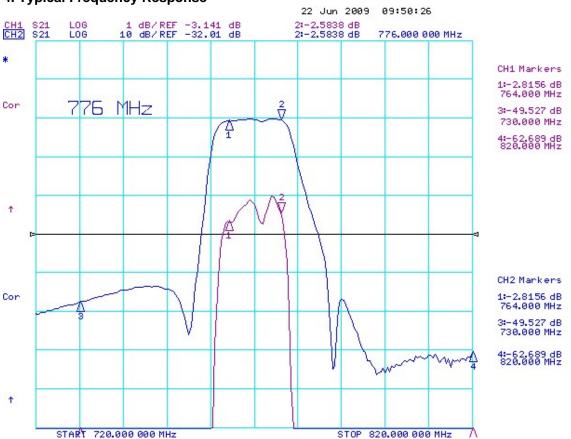
The **NDF5019** is a low-loss, compact, and economical surface-acoustic-wave (**SAW**) RF filter in a surface-mount ceramic **DCC6** case with center frequency **770.000** MHz.

1. Package Dimensions (DCC6)

Pin	Configuration		
2	Input		
5	Output		
1, 3, 4, 6	Ground		

Sign	Data (unit: mm)	Sign	Data (unit: mm)
Α	1.90±0.1	E	1.35±0.15
В	0.64±0.1 (x6)	F	3.80±0.15
С	1.00±0.1 (x5)	G	3.80±0.15
D	1.27±0.1 (x4)		


2. Marking


Laser Marking

WINNSKY INTERNATIONAL (H.K.) LIMITED

3. Test Circuit

4. Typical Frequency Response

5. Performance

5-1. Maximum Ratings

Rating	Value	Unit	
Input Power Level	Р	10	dBm
DC Voltage	V_{DC}	12	V
Operable Temperature Range	T _A	-20 to +70	$^{\circ}$
Storage Temperature Range	\mathcal{T}_{stg}	-40 to +85	$^{\circ}$

5-2. Electronic Characteristics

Characteristic		Min.	Тур.	Max.	Unit
Center Frequency	$f_{\mathbb{C}}$		770.000		MHz
Insertion Loss 764.00 MHz 776.00 MHz	IL		3.0	4.0	dB
Passband Ripple 764.00 MHz 776.00 MHz	Δα		1.0	2.0	dB
Relative Attenuation (relative to <i>IL</i>) DC 600.00 MHz 600.00 MHz 730.00 MHz 820.00 MHz 1500.0 MHz	$lpha_{rel}$	40 40 40	55 48 55	 	dB dB dB
Input / Output Impedance			50		Ω

(i) CAUTION: Electrostatic Sensitive Device. Observe precautions for handling!

© NEDI 2009. All Rights Reserved.

- 1. The frequency f_C is defined as the midpoint between the 3dB frequencies.
- 2. Unless noted otherwise, all measurements are made with the filter installed in the specified test fixture that is connected to a 50Ω test system with VSWR≤2.0:1. The test fixture L and C are adjusted for minimum insertion loss at the filter center frequency, f_C. Note that insertion loss, bandwidth, and passband shape are dependent on the impedance matching component values and quality.
- 3. Unless noted otherwise, specifications apply over the entire specified operating temperature range.
- 4. The specifications of this device are based on the test circuit shown above and subject to change or obsolescence without notice.
- 5. All equipment designs utilizing this product must be approved by the appropriate government agency prior to manufacture or sale.
- 6. Our liability is only assumed for the Surface Acoustic Wave (SAW) component(s) per se, not for applications, processes and circuits implemented within components or assemblies.
- For questions on technology, prices and delivery, please contact our sales offices or e-mail winnsky@winnsky.com.