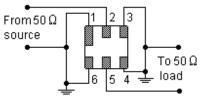


SAW Filter

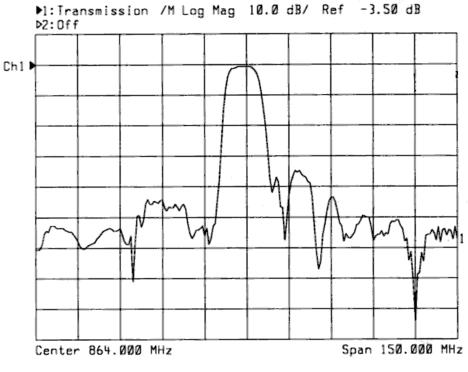
The **NDF8002** is a low-loss, compact, and economical surface-acoustic-wave (**SAW**) RF filter in a surface-mount ceramic **DCC6C** case for wireless audio application. It provides Low amplitude ripple and high image frequency suppression.

1. Package Dimensions (DCC6C)


Configuration
Input / Output
Output / Input
Case Ground

Sign	Data (unit: mm)	Sign	Data (unit: mm)
А	0.6	Е	1.1
В	1.5	F	3.0
С	1.5	G	3.0
D	1.8		

2. Marking


•	ſ
NDF 8002	

3. Test Circuit

Laser Marking

4. Typical Frequency Response

5. Performance

5-1. Maximum Ratings

Rating	Value	Unit	
Input Power Level	Р	10	dBm
DC Voltage	V _{DC}	12	V
Operable Temperature Range	T _A	-10 to +65	°C
Storage Temperature Range	\mathcal{T}_{stg}	-40 to +85	°C

5-2. Electronic Characteristics

Item	Specifications	
Nominal Center Frequency	f _C	864.000 MHz
Insertion Loss within $f_{C} \pm 1.0MHz$	IL	4.5dB max.
Absolute Attenuation 1) within 820 823 MHz 2) within 841 844 MHz 3) within 884 887 MHz 4) within 905 908 MHz	α	40dB min. 35dB min. 35dB min. 40dB min.
Ripple Deviation within $f_{C} \pm 1.0MHz$	Δα	1.5dB max.
Input / Output Impedance (Nominal)		50 Ω

(i) CAUTION: Electrostatic Sensitive Device. Observe precautions for handling!

© NEDI 2003. All Rights Reserved.

- 1. The frequency f_C is defined as the midpoint between the 3dB frequencies.
- 2. Unless noted otherwise, all measurements are made with the filter installed in the specified test fixture that is connected to a 50Ω test system with VSWR≤1.2:1. The test fixture L and C are adjusted for minimum insertion loss at the filter center frequency, f_C. Note that insertion loss, bandwidth, and passband shape are dependent on the impedance matching component values and quality.
- 3. Unless noted otherwise, specifications apply over the entire specified operating temperature range.
- 4. The specifications of this device are based on the test circuit shown above and subject to change or obsolescence without notice.
- 5. All equipment designs utilizing this product must be approved by the appropriate government agency prior to manufacture or sale.
- 6. Our liability is only assumed for the Surface Acoustic Wave (SAW) component(s) per se, not for applications, processes and circuits implemented within components or assemblies.
- 7. For questions on technology, prices and delivery, please contact our sales offices or e-mail <u>winnsky@winnsky.com</u>