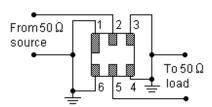


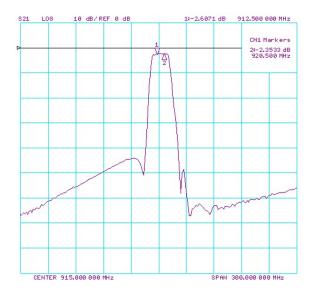
The **NDF9076** is a low-loss, compact, and economical surface-acoustic-wave (**SAW**) RF filter in a surface-mount ceramic **DCC6C** case for mobile communications ISM900 systems. It provides low insertion loss and high attenuation.

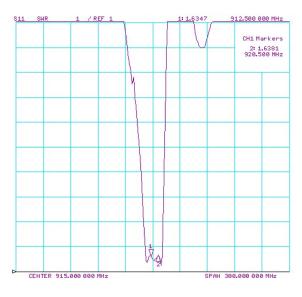
1. Package Dimensions (DCC6C)

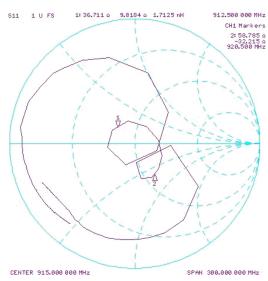
Pin	Configuration		
2	Input / Output		
5	Output / Input		
1, 3, 4, 6	Case Ground		

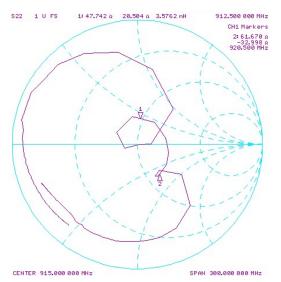

Sign	Data (unit: mm)	Sign Data (unit: mm)		
Α	0.6	Е	1.1	
В	1.5	F	3.0	
С	1.5	G	3.0	
D	1.8			

2. Marking


Laser Marking


3. Test Circuit





4. Performance

5. Specification

5-1. Maximum Ratings

Rating	Value	Unit	
Input Power Level	P	15	dBm
DC Voltage	V_{DC}	12	V
Operable Temperature Range	T_{A}	-30 to +85	$^{\circ}$
Storage Temperature Range	$T_{ m stg}$	-40 to +85	$^{\circ}$ C

5-2. Electronic Characteristics

Characteristic		Min.	Тур.	Max.	Unit
Nominal Center Frequency	$f_{\mathbb{C}}$		915.000		MHz
3dB Bandwidth	BW		19.3		MHz
Insertion Loss 911.5 918.5 MHz	IL	1	3.2	3.5	dB
Passband Ripple 911.5 918.5 MHz	Δα		0.3	1.0	dB
Absolute Stop-band Attenuation DC 600 MHz 600 840 MHz 869 894 MHz 970 1500 MHz 1500 3000 MHz	α	50 40 35 40 25	66 45 40 46 28	1 1 1 1 1 1 1	dB dB dB dB dB
Passband VSWR (Return Loss) 911.5 918.5 MHz	Z	 (9.5)	1.75 (11.3)	2.0	(dB)
Input / Output Impedance			50		Ω

(i) CAUTION: Electrostatic Sensitive Device. Observe precautions for handling!

© NEDI 2003. All Rights Reserved.

- 1. The frequency f_C is defined as the midpoint between the 3dB frequencies.
- Unless noted otherwise, all measurements are made with the filter installed in the specified test fixture that is connected to a 50Ω test system with VSWR≤1.2:1. The test fixture L and C are adjusted for minimum insertion loss at the filter center frequency, f_C. Note that insertion loss, bandwidth, and passband shape are dependent on the impedance matching component values and quality.
- 3. Unless noted otherwise, specifications apply over the entire specified operating temperature range.
- The specifications of this device are based on the test circuit shown above and subject to change or obsolescence without notice.
- 5. All equipment designs utilizing this product must be approved by the appropriate government agency prior to manufacture or sale.
- 6. Our liability is only assumed for the Surface Acoustic Wave (SAW) component(s) per se, not for applications, processes and circuits implemented within components or assemblies.
- For questions on technology, prices and delivery, please contact our sales offices or e-mail winnsky@winnsky.com